Solid State Chemistry (6 ed)
An Introduction

By (author) Elaine A. Moore,Jennifer Readman

ISBN13: 9781032728940

Imprint: CRC Press

Publisher: Taylor & Francis Ltd

Format: Hardback

Published: 21/05/2025

Availability: POD

Description
Solid State Chemistry: An Introduction 6th Edition is a fully revised edition of one of our most successful textbooks with at least 20% new information and new images of crystal structures. Solid-state chemistry is still a rapidly advancing field, contributing to areas such as batteries for transport and energy storage, nanostructured materials and porous materials for the capture of carbon dioxide and other pollutants. This edition aims, as previously, not only to teach the basic science that underpins the subject but also to direct the reader to the most modern techniques and to expanding and new areas of research. The user-friendly style takes a largely non-mathematical approach and gives practical examples of applications of solid-state materials and concepts. The chapter on sustainability written by an expert in the field has been updated, and examples of the relevance of solid-state chemistry to sustainability are used throughout. The chapter on batteries has been extended to include fuel cells. Other new topics in this edition include X-ray-free electron laser crystallography and thermal properties of materials. A companion website offering accessible resources for students and instructors alike, featuring topics and tools such as quizzes, videos, web links and more has been provided for this edition. Excellent overview of solid state properties and syntheses. User-friendly style taking a largely non-mathematical approach and giving practical examples of applications of solid state materials and concepts. The companion website offers accessible resources featuring topics and tools such as quizzes, videos, web links and more. Significantly updated section on sustainability in solid-state chemistry. Broad range of topics to provide students with a firm grounding in the major theoretical and practical aspects of the chemistry of solids.
Chapter 1 – An Introduction to Crystal Structures Jennifer E. Readman and Lesley E. Smart 1.1 Introduction 1.2 Close packing 1.3 Body-centred and Primitive Structures 1.4 Lattices and Unit Cells 1.4.1 Lattices 1.4.2 One- and Two- Dimensional Unit Cells 1.4.3 Three-Dimensional Lattices and Their Unit Cells 1.5 Crystalline solids 1.5.1 Unit cell stoichiometry and Fractional Coordinates 1.5.2 Ionic Solids with Formula MX 1.5.2.1 Caesium Chloride 1.5.2.2 Sodium Chloride 1.5.2.3 Zinc Blende & Wurtzite 1.5.2.4 Nickel Arsenide 1.5.3 Solids with General Formula MX2 1.5.3.1 Fluorite and Anti-Fluorite 1.5.3.2 Cadmium Chloride and Cadmium Iodide 1.5.3.3 Rutile 1.5.3.4 -Cristobalite 1.5.4 Other Important Crystal Structures 1.5.4.1 Rhenium trioxide 1.5.4.2 Perovskite 1.5.4.3 Spinel and Inverse Spinel 1.5.5 Miscellaneous Oxides 1.6 Ionic Radii and the Radius Ratio Rule 1.7 Extended Covalent Arrays 1.8 Molecular Structures 1.9 Lattice Energy 1.9.1 Born-Haber Cycle 1.9.2 Calculating Lattice Enthalpies 1.9.3 Calculations Using Thermodynamic Cycles and Lattice Energies 1.10 Symmetry 1.10.1 Symmetry Notation 1.10.2 Axes of Symmetry 1.10.3 Planes of Symmetry 1.10.4 Inversion 1.10.5 Inversion Axes, Improper Symmetry Axes, and the Identity Element 1.10.6 Operations 1.10.7 Symmetry in Crystals 1.10.8 Translational Symmetry Elements 1.10.9 Space groups 1.11 Miller Indices and Interplanar spacing 1.12 Quasicrystals Summary. Questions Chapter 2 Scattering Techniques for Characterising Solids Jennifer E. Readman 2.1 Introduction 2.2 X-ray Diffraction 2.2.1 The Generation of X-rays 2.2.2 Scattering of X-rays & Bragg’s Law 2.2.3 The Diffraction Experiment 2.2.4 The Powder Diffraction Pattern 2.2.5 The Intensity of Diffracted Peaks 2.2.6 The Width of Diffracted Peaks 2.2.7 Rietveld Refinement 2.2.8 Structure & Single-Crystal Diffraction solution 2.3 Synchrotron Radiation 2.3.1 Introduction 2.3.2 Generation of Synchrotron X-rays 2.3.3 Bending Magnets and Insertion Devices 2.4 Neutron Diffraction 2.4.1 Background & Production of Neutrons 2.4.2 Neutron scattering 2.4.3 Experimental Neutron Diffraction 2.4.4 Magnetic Scattering 2.5 Pair Distribution Function Analysis (PDF) 2.5.1 Introduction 2.5.2 Theoretical background 2.5.3 The Total Scattering Experiment 2.6 In-situ Experiments 2.6.1 Variable Temperature 2.6.2 Variable Pressure 2.7 Free Electron Lasers (XFELs) 2.7.1 Introduction 2.7.2 How XFEL X-rays Are Generated 2.7.3 Typical XFEL Experiments Appendix Allowed reflections for simple cubic cells Questions Chapter 3 – Non-Scattering Characterisation Techniques Jennifer E. Readman 3.1 Introduction 3.2 Electron Microscopy 3.2.1 Scanning Electron Microscopy (SEM} 3.2.2 Transmission Electron Microscopy (TEM) 3.2.3 Electron Diffraction (ED) 3.2.4 Scanning Transmission Electron Microscopy (STEM) 3.2.5 Energy Dispersive X-Ray Analysis (EDS / EDX) 3.2.6 Electron Energy Loss Spectroscopy (EELS) 3.2.7 Scanning Tunnelling Microscopy (STM) & Atomic Force Microscopy (AFM) 3.3 X-ray Spectroscopy 3.3.1 Introduction 3.3.2 X-ray Fluorescence Spectroscopy (XRF) 3.3.3 X-ray Absorption Spectroscopy 3.3.4 EXAFS 3.3.5 XANES 3.3.6 Experimental XAS 3.3.7 X-ray Photoelectron Spectroscopy (XPS) 3.4 Solid State NMR 3.4.1 Introduction 3.4.2 29-Si MAS NMR 3.4.3 Quadrupolar nuclei 3.5 Surface Area Measurements 3.5.1 Gas Adsorption Isotherms 3.5.2 Classification of Isotherms 3.6 Thermal Analysis 3.6.1 Thermogravimetric analysis (TGA) 3.6.2 Differential Thermal Analysis (DTA) 3.6.3 Differential Scanning Calorimetry (DSC) 3.6.4 Temperature Programmed Reduction (TPR) & Temperature Programmed Desorption (TPD) Summary for chapters 2 and 3, Questions Chapter 4 Synthesis Elaine A. Moore and Lesley E. Smart 4.1 Introduction 4.2 High-Temperature Ceramic Methods 4.2.1 Direct Heating of Solids 4.2.2 Precursor Methods 4.2.3 Sol–Gel Methods 4.3. High-Pressure Methods 4.3.1. Using High-Pressure Gases 4.3.2. Using Hydrostatic Pressures 4.4. Chemical Vapour Deposition 4.4.1. Preparation of Semiconductors 4.4.2. Diamond Films 4.4.3 Optical Fibres 4.5. Preparing Single Crystals 4.5.1 Epitaxy Methods 4.5.2 Chemical Vapour Transport 4.5.3. Melt Methods 4.5.4 Solution Methods 4.6. Intercalation 4.7. Green Chemistry 4.7.1. Mechanochemical Synthesis 4.7.2. Microwave Synthesis 4.7.3. Hydrothermal Methods 4.7.4. Ultrasound-assisted synthesis 4.7.5 Biological-related methods 4.7. 6. Barium Titanate 4.8. Choosing a Method Chapter 5 Solids:Bonding and Electronic Properties Elaine A. Moore and Neil Allan 5.2. Bonding in Solids: Free electron theory 5.2.1. Electronic conductivity 5.1 Introduction 5.3. Bonding in Solids: Molecular Orbital Theory 5.3.1. Simple Metals 5.3.2. Group 14 elements 5.4. Semiconductors 5.4.1. Photoconductivity 5.4.2. Doped Semiconductors 5.5. p-n junction and field effect transistors 5.5.1. Flash Memory 5.6. Bands in compounds: Gallium Arsenide 5.7. Bands in d-block compounds: transition metal monoxides 5.8. Superconductivity 5.8.1. BCS Theory of superconductivity 5.8.2. High temperature superconductors: cuprates 5.8.3. Iron superconductors 5.9. Summary Questions Chapter 6 Defects and Non-stoichiometry Elaine A. Moore and Lesley E. Smart 6.1. Introduction 6.2 Point Defects and Their Concentration 6.2.1 Intrinsic Defects 6.2.2 Concentration of Defects 6.2.3 Extrinsic Defects 6.2.4 Defect Nomenclature 6.3 Nonstoichiometric Compounds 6.3.1 Nonstoichiometry in Wüstite (FeO) and MO-Type Oxides 6.3.2 Uranium Dioxide 6.3.3 Titanium Monoxide Structure 6.4 Extended Defects 6.4.1 Crystallographic shear 6.4.2 Planar Intergrowths 6.4.3 Block Structures 6.4.4 Pentagonal Columns 6.4.5 Infinitely Adaptive Structures 6.5 Properties of Nonstoichiometric Oxides 6.5.1. Transition metal monoxides 6.6 Summary Questions Chapter 7 Batteries and Fuel Cells Elaine A. Moore and Lesley E. Smart 7.1. Introduction 7.2. Ionic conductivity in solids 7.3. Solid electrolytes 7.3.1 Silver-ion conductors 7.3.2. Lithium-ion conductors 7.3.3. Sodium-ion conductors 7.3.4. Oxide-ion conductors 7.4. Lithium-based batteries 7.5. Sodium-based batteries 7.6. Fuel cells 7.6.1. Solid oxide fuel cells 7.6.2. Proton Exchange Membrane cells 7.7. Summary Questions Chapter 8 Microporous and Mesoporous solids Jennifer E. Readman (and Lesley E. Smart ?) 8.1. Introduction 8.2 Silicates 8.3. Zeolites 8.3.1. Background 8.3.2. Composition and Structure of Zeolites. 8.3.3. Zeolite Nomenclature 8.3.4. Si/Al ratios in Zeolites 8.3.5. Exchangeable Cations 8.3.6 Synthesis of Zeolites 8.3.7. Uses of Zeolites 8.4. Zeotypes 8.4.1. Aluminophosphates 8.4.2. Mixed Coordination Metallosilicates 8.5. Metal-Organic Frameworks (MOFs) 8.5.1. Composition and Structure of MOFs 8.5.2. Example MOF Structures 8.5.3. Breathing MOFs 8.5.4. Synthesis of MOFs 8.5.5. Applications of MOFs 8.6. Zeolite-like MOFs 8.7. Covalent Organic Frameworks 8.8. Mesoporous Silicas 8.9. Clays Summary Questions Chapter Optical 9 and Thermal Properties of Solids Elaine A. Moore 9.1 Introduction 9.2. Interaction of Light with atoms 9.2.1. Ruby Laser 9.2.2. Phosphors for LEDs 9.3. Colour Centres 9.4. Absorption and Emission of Radiation in Continuous Solids 9.4.1. Gallium Arsenide Laser 9.4.2. Quantum Wells: Blue laser 9.4.3. Light emitting diodes (LEDs) 9.4.4. Photovoltaic (Solar) Cells 9.5. Carbon-based conducting polymers 9.5.1. Polyacetylene 9.5.2. Bonding in Polyacetylene and related polymers 9.5.3 Organic LEDs (QLEDs) 9.6. Refraction 9.6.1. Calcite 9.6.2. Optical Fibres 9.7. Photonic crystals 9.8. Thermal properties of Materials 9.8.1 Heat Capacity 9.8.2. Thermal Energy Storage 9.8.3. Thermal Expansion 9.8.4. Thermal conductivity 9.8.5 Thermal devices 9.9 Summary Questions Chapter 10 Magnetic and Electrical Properties Elaine A. Moore 10.1. Introduction 10.2. Magnetic Susceptibility 10.3. Paramagnetism in metal complexes 10.4. Ferromagnetic Metals 10.4.1. Magnetic Domains 10.4.2 Permanent magnets 10.4.3 Magnetic Shielding 10.5. Ferromagnetic compounds: chromium dioxide 10.6. Antiferromagnetism: transition metal monoxides 10.7. Ferrimagnetism: ferrites 10.7.1. Magnetic strips on swipe cards 10.8. Spiral Magnetism 10.9 Giant, Tunneling and colossal magnetoresistance 10.9.1 Giant Magnetoresistance 10.9.2. Tunneling Magnetoresistance 10.9.3 Car steering angle sensors 10.9.4 Colossal Magnetoresistance: manganites 10.10 Magnetic properties of superconductors 10.11 Electrical Polarisation 10.12. Piezoelectric crystals A-Quartz 10.13 Ferroelectric effect 10.13.1. Capacitors 10.14. Multiferroics 10.14.1. Type 1 multiferroics:bismuth ferrite 10.14.2. Type 2 multiferroics: terbium manganite 10.15. Summary Questions Chapter 11 Nanostructures Elaine A. Moore and Lesley E. Smart 11.1. Introduction 11.2. Consequences of the nanoscale 11.2.1. Nanoparticle morphology 11.2.2. Mechanical Properties 11.2.3 Melting temperature 11.2.4. Electronic properties 11.2.5. Optical Properties 11.2.6 Magnetic Properties 11.3. Nanostructural Carbon 11.3.1. Carbon Black 11.3.2. Graphene 11.3.3. Graphene Oxide 11.3.4. Buckminsterfullerene 11.3.5. Carbon nanotubes 11.4. Noncarbon nanostructures 11.4.1 Fumed Silica 11.4.2. Metal nanoparticles 11.4.3. Non-carbon -ene structures 11.4.4. Other non-carbon nanostructures 11.5. Synthesis of nanostructures 11.5.1 Top-down methods 11.5.2. Bottom-up methods 11.5.3 Synthesis using templates 11.6. Nanostructures in health 11.7. Safety 11.8 Summary Questions Chapter 12 Sustainability Mary Anne White 12.1. Introduction 12.1.1 Definition of Materials Sustainability 12.1.2 Sustainable Materials Chemistry Goals 12.1.3 Materials Dependence in Society 12.1.4 Elemental Abundances 12.1.5 Solid State Chemistry’s Role in Sustainability 12.1.6 Material Life Cycle 12.2 Tools for Sustainable Approaches 12.2.1 Green Chemistry 12.2.2 Herfindahl-Hirschman Index (HHI) 12.2.3 Embodied Energy 12.2.4 Exergy 12.2.5 Life Cycle Assessment 12.3 Case Study: Sustainability of a Smartphone 12.4 Theoretical Approaches 12.5 Summary Questions
  • Inorganic chemistry
  • Materials science
  • Solid state chemistry
  • Professional & Vocational
  • Further/Higher Education
Height:
Width:
Spine:
Weight:920.00
List Price: £105.00